Skip to main content

The Solar Cell That Turns 1 Photon into 2 Electrons

M.I.T. researchers develop an organic solar cell that breaks 100 percent quantum efficiency

Solar cells are picky. If an incoming photon has too little energy, the cell won’t absorb it. If a photon has too much, the excess is wasted as heat. No matter what, a silicon solar cell can never generate more than one electron from a single photon. Such harsh quantum realities severely limit the conversion efficiency of photovoltaic cells, and scientists have spent decades looking for work-arounds.

Now, researchers at the Massachusetts Institute of Technology’s Center for Excitonics have published a compelling case that the key to greater solar efficiency might be an organic dye called pentacene. In today’s issue of Science Daniel Congreve, Jiye Lee, Nicholas Thompson, Marc Baldo and six others show that a photovoltaic cell based on pentacene can generate two electrons from a single photon—more electricity from the same amount of sun. Scientists have suspected for some time that this might work; today’s paper is proof of concept.

The key is a phenomenon called singlet-exciton fission, in which an arriving photon generates two “excitons” (excited states) that can be made to yield two electrons. Previous researchers had accomplished similar tricks using quantum dots (tiny pieces of matter that behave like atoms) and deep-ultraviolet light. “What we showed here,” Baldo says, in addition to using visible light, “is that [this process] works very, very effectively in organic materials.”


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Why it works is still not particularly clear, and for now, the pentacene cell works only with an extremely narrow band of visible light. But Baldo says it should be possible to create a pentacene coating for silicon solar cells that boosts the total conversion efficiency from today’s 25 percent to a shade over 30 percent—a significant jump. Developing that technology is the obvious next step. “Can we apply this thing as a coating on silicon?” Baldo says. “If we can do that, it would have a pretty major impact on solar cell technology.”

Seth Fletcher is chief features editor at Scientific American. His book Einstein's Shadow (Ecco, 2018), on the Event Horizon Telescope and the quest to take the first picture of a black hole, was excerpted in the New York Times Magazine and named a New York Times Book Review Editor's Choice. His book Bottled Lightning (2011) was the first definitive account of the invention of the lithium-ion battery and the 21st century rebirth of the electric car. His writing has appeared in the New York Times Magazine, the New York Times op-ed page, Popular Science, Fortune, Men's Journal, Outside and other publications. His television and radio appearances have included CBS's Face the Nation, NPR's Fresh Air, the BBC World Service, and NPR's Morning Edition, Science Friday, Marketplace and The Takeaway. He has a master's degree from the Missouri School of Journalism and bachelor's degrees in English and philosophy from the University of Missouri.

More by Seth Fletcher